Search results
Results from the WOW.Com Content Network
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation.Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be observed.
Dark matter is called ‘dark’ because it’s invisible to us and does not measurably interact with anything other than gravity. It could be interspersed between the atoms that make up the Earth ...
The universe may be accelerating, fueled perhaps by a cosmological constant or some other field possessing long range 'repulsive' effects. A model must predict the correct form for the large scale clustering spectrum, [3] account for cosmic microwave background anisotropies on large and intermediate angular scales, and provide agreement with the luminosity distance relation obtained from ...
Direct detection of dark matter is the science of attempting to directly measure dark matter collisions in Earth-based experiments. Modern astrophysical measurements, such as from the cosmic microwave background , strongly indicate that 85% of the matter content of the universe is unaccounted for. [ 1 ]
As "dark matter", baryonic dark matter is undetectable by its emitted radiation, but its presence can be inferred from gravitational effects on visible matter. This form of dark matter is composed of "baryons", heavy subatomic particles such as protons and neutrons and combinations of these, including non-emitting ordinary atoms.
Dark matter is a form of matter that neither emits nor absorbs light. Within physics, this behavior is characterized by dark matter not interacting with electromagnetic radiation, hence making it dark and rendering it undetectable via conventional instruments in physics. [1]
The discrepancies could also be explained by particular properties (stellar masses or effective volume) of the candidate galaxies, yet unknown force or particle outside of the Standard Model through which dark matter interacts, more efficient baryonic matter accumulation by the dark matter halos, early dark energy models, [106] or the ...
Particle physics models which account for dark matter or which lead to successful baryogenesis may predict a strongly first-order electroweak phase transition. [20] The electroweak baryogenesis model may explain the baryon asymmetry in the universe, the observation that the amount of matter vastly exceeds the amount of matter. [4]