Search results
Results from the WOW.Com Content Network
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation.Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be observed.
Dark matter is called ‘dark’ because it’s invisible to us and does not measurably interact with anything other than gravity. It could be interspersed between the atoms that make up the Earth ...
In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter.According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only a small fraction being the ordinary baryonic matter that composes stars, planets, and living organisms.
Phlogiston, hypothetical combustible content in matter used to explain thermodynamics before the 18th century. Ultramundane corpuscles, from Le Sage's theory of gravitation, used to explain gravitational phenomena. Strangelet, hypothetical particle that could form matter consisting of strange quarks.
A dark star is a hypothetical type of star that may have existed early in the universe before conventional stars were able to form and thrive. Properties [ edit ]
Dark matter is a form of matter that neither emits nor absorbs light. Within physics, this behavior is characterized by dark matter not interacting with electromagnetic radiation, hence making it dark and rendering it undetectable via conventional instruments in physics. [1]
As "dark matter", baryonic dark matter is undetectable by its emitted radiation, but its presence can be inferred from gravitational effects on visible matter. This form of dark matter is composed of "baryons", heavy subatomic particles such as protons and neutrons and combinations of these, including non-emitting ordinary atoms.
Dark matter production occurs predominantly when the temperature of the plasma falls under the mass of the dark matter particle itself. This is in contrast to the thermal freeze out theory, in which the initial abundance of dark matter was large, and differentiation into lighter particles decreases and eventually stops as the temperature of the ...