Search results
Results from the WOW.Com Content Network
Part of force field of ethane for the C-C stretching bond. In the context of chemistry, molecular physics, physical chemistry, and molecular modelling, a force field is a computational model that is used to describe the forces between atoms (or collections of atoms) within molecules or between molecules as well as in crystals.
CHARMM also includes polarizable force fields using two approaches. One is based on the fluctuating charge (FQ) model, also termed Charge Equilibration (CHEQ). [13] [14] The other is based on the Drude shell or dispersion oscillator model. [15] [16] Parameters for all of these force fields may be downloaded from the Mackerell website for free. [17]
A force field is used to minimize the bond stretching energy of this ethane molecule. Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular ...
The OPLS (Optimized Potentials for Liquid Simulations) force field was developed by Prof. William L. Jorgensen at Purdue University and later at Yale University, and is being further developed commercially by Schrödinger, Inc.
The simplest choice, employed in many popular force fields, is the "pair potential", in which the total potential energy can be calculated from the sum of energy contributions between pairs of atoms. Therefore, these force fields are also called "additive force fields".
Spartan is a molecular modelling and computational chemistry application from Wavefunction. [2] It contains code for molecular mechanics, semi-empirical methods, ab initio models, [3] density functional models, [4] post-Hartree–Fock models, [5] and thermochemical recipes including G3(MP2) [6] and T1. [7]
GROningen MOlecular Simulation (GROMOS) is the name of a force field for molecular dynamics simulation, and a related computer software package. Both are developed at the University of Groningen, and at the Computer-Aided Chemistry Group [1] at the Laboratory for Physical Chemistry [2] at the Swiss Federal Institute of Technology ().
An intermolecular force (IMF; also secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. atoms or ions.