Search results
Results from the WOW.Com Content Network
Part of force field of ethane for the C-C stretching bond. In the context of chemistry, molecular physics, physical chemistry, and molecular modelling, a force field is a computational model that is used to describe the forces between atoms (or collections of atoms) within molecules or between molecules as well as in crystals.
A force field is used to minimize the bond stretching energy of this ethane molecule. Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular ...
The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.
The OPLS (Optimized Potentials for Liquid Simulations) force field was developed by Prof. William L. Jorgensen at Purdue University and later at Yale University, and is being further developed commercially by Schrödinger, Inc.
It is referred to simply as the potential in physics, or the force field in chemistry. The first equation comes from Newton's laws of motion; the force acting on each particle in the system can be calculated as the negative gradient of ().
The term force field characterizes the collection of parameters for a given interatomic potential (energy function) and is often used within the computational chemistry community. [50] The force field parameters make the difference between good and poor models. Force fields are used for the simulation of metals, ceramics, molecules, chemistry ...
The bond, angle, dihedral, and nonbonded terms are similar to those found in other force fields such as AMBER. The CHARMM force field also includes an improper term accounting for out-of-plane bending (which applies to any set of four atoms that are not successively bonded), where is the force constant and is the out-of-plane angle.
The BKS potential is a force field that may be used to simulate the interatomic potential between Silica glass atoms. [4] Rather than relying only on experimental data, the BKS potential is derived by combining ab initio quantum chemistry methods on small silica clusters to describe accurate interaction between nearest-neighbors, which is the ...