Search results
Results from the WOW.Com Content Network
The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively). Wave functions are complex ...
Here, (,) is a wave function, a function that assigns a complex number to each point at each time . The parameter m {\displaystyle m} is the mass of the particle, and V ( x , t ) {\displaystyle V(x,t)} is the potential that represents the environment in which the particle exists.
The following equations have solutions which satisfy the superposition principle, that is, the wave functions are additive. Throughout, the standard conventions of tensor index notation and Feynman slash notation are used, including Greek indices which take the values 1, 2, 3 for the spatial components and 0 for the timelike component of the ...
The term "wave function" is typically used for a different mathematical representation of the quantum state, one that uses spatial coordinates also called the "position representation". [9]: 324 When the wave function representation is used, the "reduction" is called "wave function collapse".
Born–von Karman boundary conditions are periodic boundary conditions which impose the restriction that a wave function must be periodic on a certain Bravais lattice. Named after Max Born and Theodore von Kármán, this condition is often applied in solid state physics to model an ideal crystal. Born and von Karman published a series of ...
In quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves.The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension.
The concept of universal wavefunction was introduced by Hugh Everett in his 1956 PhD thesis draft The Theory of the Universal Wave Function. [8] It later received investigation from James Hartle and Stephen Hawking [9] who derived the Hartle–Hawking solution to the Wheeler–deWitt equation to explain the initial conditions of the Big Bang ...
A so-called eigenmode is a solution that oscillates in time with a well-defined constant angular frequency ω, so that the temporal part of the wave function takes the form e −iωt = cos(ωt) − i sin(ωt), and the amplitude is a function f(x) of the spatial variable x, giving a separation of variables for the wave function: (,) = ().