enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Avogadro's law - Wikipedia

    en.wikipedia.org/wiki/Avogadro's_Law

    The law is a specific case of the ideal gas law. A modern statement is: Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [1] For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are ...

  3. Gas laws - Wikipedia

    en.wikipedia.org/wiki/Gas_laws

    Combined with Avogadro's law (i.e. since equal volumes have an equal number of molecules) this is the same as being inversely proportional to the root of the molecular weight. Dalton's law of partial pressures This law states that the pressure of a mixture of gases simply is the sum of the partial pressures of the individual components. Dalton ...

  4. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The interest stems from that accurate measurements of the unit cell volume, atomic weight and mass density of a pure crystalline solid provide a direct determination of the Avogadro constant. [3] The CODATA recommended value for the molar volume of silicon is 1.205 883 199 (60) × 10 −5 m 3 ⋅mol −1, with a relative standard uncertainty of ...

  5. Avogadro constant - Wikipedia

    en.wikipedia.org/wiki/Avogadro_constant

    The Avogadro constant, commonly denoted N A [1] or L, [2] is an SI defining constant with an exact value of 6.022 140 76 × 10 23 mol −1 (reciprocal moles). [3] [4] It is this defined number of constituent particles (usually molecules, atoms, ions, or ion pairs—in general, entities) per mole and used as a normalization factor in relating the amount of substance, n(X), in a sample of a ...

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The gas constant R is defined as the Avogadro constant N A multiplied by the Boltzmann constant k (or k B): = = 6.022 140 76 × 10 23 mol −1 × 1.380 649 × 10 −23 J⋅K −1 = 8.314 462 618 153 24 J⋅K −1 ⋅mol −1. Since the 2019 revision of the SI, both N A and k are defined with exact numerical values when expressed in SI units. [2]

  8. Mole (unit) - Wikipedia

    en.wikipedia.org/wiki/Mole_(unit)

    The Avogadro constant (symbol N A = N 0 /mol) has numerical multiplier given by the Avogadro number with the unit reciprocal mole (mol −1). [2] The ratio n = N/N A is a measure of the amount of substance (with the unit mole). [2] [3] [4]

  9. Amedeo Avogadro - Wikipedia

    en.wikipedia.org/wiki/Amedeo_Avogadro

    Lorenzo Romano Amedeo Carlo Avogadro, Count of Quaregna and Cerreto [1] (/ ˌ æ v ə ˈ ɡ ɑː d r oʊ /, [2] also US: / ˌ ɑː v-/, [3] [4] [5] Italian: [ameˈdɛːo avoˈɡaːdro]; 9 August 1776 – 9 July 1856) was an Italian scientist, most noted for his contribution to molecular theory now known as Avogadro's law, which states that equal volumes of gases under the same conditions of ...