Search results
Results from the WOW.Com Content Network
The angles which the circumscribed circle forms with the sides of the triangle coincide with angles at which sides meet each other. The side opposite angle α meets the circle twice: once at each end; in each case at angle α (similarly for the other two angles).
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
Circumcircle, the circumscribed circle of a triangle, which always exists for a given triangle. Cyclic polygon, a general polygon that can be circumscribed by a circle. The vertices of this polygon are concyclic points. All triangles are cyclic polygons. Cyclic quadrilateral, a special case of a cyclic polygon.
Hyperbolic triangle, a triangle that has straight sides in hyperbolic geometry, but is drawn as circular in some models of hyperbolic geometry; Lune and Lens, two-sided figures bounded by circular arcs; Sine-triple-angle circle; Trefoil, a circular triangle bulging outward from its three vertices, used in architecture
If an orthocentric system of four points A, B, C, H is given, then the four triangles formed by any combination of three distinct points of that system all share the same nine-point circle. This is a consequence of symmetry: the sides of one triangle adjacent to a vertex that is an orthocenter to another triangle are segments from that second ...
A kite is cyclic if and only if it has two right angles – a right kite. A bicentric quadrilateral is a cyclic quadrilateral that is also tangential and an ex-bicentric quadrilateral is a cyclic quadrilateral that is also ex-tangential. A harmonic quadrilateral is a cyclic quadrilateral in which the product of the lengths of opposite sides are ...
The circumradius R and the inradius r satisfy the inequality which was proved by L. Fejes Tóth in 1948. [19] It holds with equality only when the two circles are concentric (have the same center as each other); then the quadrilateral is a square. The inequality can be proved in several different ways, one using the double inequality for the ...
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).