Search results
Results from the WOW.Com Content Network
Blood resistance varies depending on blood viscosity and its plugged flow (or sheath flow since they are complementary across the vessel section) size as well, and on the size of the vessels. Assuming steady, laminar flow in the vessel, the blood vessels behavior is similar to that of a pipe.
The circulatory system uses the channel of blood vessels to deliver blood to all parts of the body. This is a result of the left and right sides of the heart working together to allow blood to flow continuously to the lungs and other parts of the body. Oxygen-poor blood enters the right side of the heart through two large veins.
An arteriole is a small-diameter blood vessel in the microcirculation that extends and branches out from an artery and leads to capillaries. [1] Arterioles have muscular walls (usually only one to two layers of smooth muscle cells) and are the primary site of vascular resistance. The greatest change in blood pressure and velocity of blood flow ...
In general, decrease in blood flow to the brain can be a result of thrombosis causing a partial or full blockage of blood vessels, hypotension in systemic circulation (and consequently the brain), or cardiac arrest. This decrease in blood flow in the cerebral vascular system can result in a buildup of metabolic wastes generated by neurons and ...
In vertebrates, the circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the body. [1] [2] It includes the cardiovascular system, or vascular system, that consists of the heart and blood vessels (from Greek kardia meaning heart, and Latin vascula meaning vessels).
Metabolic vessels – capillaries; Capacitance vessels – veins; Particular feature of resistance vessels is ability to change lumen crossectional area and influence blood pressure. Human arteries or arterioles that are around 0.2 mm or smaller contribute to creation of the blood flow resistance and are called resistance arteries. [2] [3]
Heart failure is caused by chronic oxygen deprivation due to reduced blood flow, which weakens the heart over time. Arrhythmias are caused by inadequate blood supply to the heart that interferes with the heart's electric impulse. The coronary arteries can constrict as a response to various stimuli, mostly chemical. This is known as a coronary ...
The numerous elastic laminae of these arteries contribute to their important function of making blood flow more uniform. During ventricular contraction ( systole ), blood moves through the arteries forcefully, stretching the elastin and distending the wall within limits set by its content of collagen .