Search results
Results from the WOW.Com Content Network
Let f be a continuous function on [a,b] such that f(a)<0 while f(b)>0. Then there exists a point c in [a,b] such that f(c)=0. The proof proceeds as follows. Let N be an infinite hyperinteger. Consider a partition of [a,b] into N intervals of equal length, with partition points x i as i runs from 0 to N.
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
respectively. If these limits exist at p and are equal there, then this can be referred to as the limit of f(x) at p. [7] If the one-sided limits exist at p, but are unequal, then there is no limit at p (i.e., the limit at p does not exist). If either one-sided limit does not exist at p, then the limit at p also does not exist.
In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...
In recursion theory, the limit lemma proves that it is possible to encode undecidable problems using limits. [14] There are several theorems or tests that indicate whether the limit exists. These are known as convergence tests. Examples include the ratio test and the squeeze theorem. However they may not tell how to compute the limit.
This means that if |g(x)| diverges to infinity as x approaches c and both f and g satisfy the hypotheses of L'Hôpital's rule, then no additional assumption is needed about the limit of f(x): It could even be the case that the limit of f(x) does not exist. In this case, L'Hopital's theorem is actually a consequence of Cesàro–Stolz.
A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .
Examples of discontinuous linear maps are easy to construct in spaces that are not complete; on any Cauchy sequence of linearly independent vectors which does not have a limit, there is a linear operator such that the quantities ‖ ‖ / ‖ ‖ grow without bound. In a sense, the linear operators are not continuous because the space has "holes".