enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  3. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.

  4. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  6. Five-point stencil - Wikipedia

    en.wikipedia.org/wiki/Five-point_stencil

    The first derivative of a function f of a real variable at a point x can be ... the finite difference ... This method can be more flexible as the extension to a non ...

  7. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    The most commonly used method for numerically solving BVPs in one dimension is called the Finite Difference Method. [3] This method takes advantage of linear combinations of point values to construct finite difference coefficients that describe derivatives of the function.

  8. Central differencing scheme - Wikipedia

    en.wikipedia.org/wiki/Central_differencing_scheme

    Figure 1.Comparison of different schemes. In applied mathematics, the central differencing scheme is a finite difference method that optimizes the approximation for the differential operator in the central node of the considered patch and provides numerical solutions to differential equations. [1]

  9. Nine-point stencil - Wikipedia

    en.wikipedia.org/wiki/Nine-point_stencil

    It is used to write finite difference approximations to derivatives at grid points. It is an example for numerical differentiation. This stencil is often used to approximate the Laplacian of a function of two variables. An illustration of the nine-point stencil in two dimensions.