Search results
Results from the WOW.Com Content Network
A common solution is to initially compute the sine of many evenly distributed values, and then to find the sine of x we choose the sine of the value closest to x through array indexing operation. This will be close to the correct value because sine is a continuous function with a bounded rate of change. [10]: 6 For example: [11]: 545–548
Thus, solutions of the boundary value problem correspond to solutions of the following system of N equations: (;,) = (;,) = (;,) =. The central N−2 equations are the matching conditions, and the first and last equations are the conditions y(t a) = y a and y(t b) = y b from the boundary value problem. The multiple shooting method solves the ...
Record linkage (also known as data matching, data linkage, entity resolution, and many other terms) is the task of finding records in a data set that refer to the same entity across different data sources (e.g., data files, books, websites, and databases).
A fuzzy Mediawiki search for "angry emoticon" has as a suggested result "andré emotions" In computer science, approximate string matching (often colloquially referred to as fuzzy string searching) is the technique of finding strings that match a pattern approximately (rather than exactly).
In mathematics, economics, and computer science, the stable marriage problem (also stable matching problem) is the problem of finding a stable matching between two equally sized sets of elements given an ordering of preferences for each element.
Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset.
Fuzzy matching is a technique used in computer-assisted translation as a special case of record linkage.It works with matches that may be less than 100% perfect when finding correspondences between segments of a text and entries in a database of previous translations.
Many-valued logic (also multi-or multiple-valued logic) is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.e., "true" and "false") for any proposition. Classical two-valued logic may be extended to n-valued logic for n greater than 2.