Search results
Results from the WOW.Com Content Network
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
Kawasaki's theorem (mathematics of paper folding) Kelvin's circulation theorem ; Kempf–Ness theorem (algebraic geometry) Kepler conjecture (discrete geometry) Kharitonov's theorem (control theory) Khinchin's theorem (probability) Killing–Hopf theorem (Riemannian geometry) Kinoshita–Lee–Nauenberg theorem (quantum field theory)
Hejhal's proof of a general form of the Selberg trace formula consisted of 2 volumes with a total length of 1322 pages. Arthur–Selberg trace formula. Arthur's proofs of the various versions of this cover several hundred pages spread over many papers. 2000 Almgren's regularity theorem. Almgren's proof was 955 pages long.
Pages which contain only proofs (of claims made in other articles) should be placed in the subcategory Category:Article proofs. Pages which contain theorems and their proofs should be placed in the subcategory Category:Articles containing proofs. Articles related to automatic theorem proving should be placed in Category:Automated theorem proving.
The Mizar Project was started around 1973 by Andrzej Trybulec as an attempt to reconstruct mathematical vernacular so it can be checked by a computer. [3] Its current goal, apart from the continual development of the Mizar System, is the collaborative creation of a large library of formally verified proofs, covering most of the core of modern mathematics.
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
The theorem appears first in the 1891 article "Die Theorie der regulären graphs". [1] By today's standards Petersen's proof of the theorem is complicated. A series of simplifications of the proof culminated in the proofs by Frink (1926) and König (1936). In modern textbooks Petersen's theorem is covered as an application of Tutte's theorem.
In proof by exhaustion, the conclusion is established by dividing it into a finite number of cases and proving each one separately. The number of cases sometimes can become very large. For example, the first proof of the four color theorem was a proof by exhaustion with 1,936 cases. This proof was controversial because the majority of the cases ...