Search results
Results from the WOW.Com Content Network
The formula simplifies: = ′ (). The unit tangent vector determines the orientation of the curve, or the forward direction, corresponding to the increasing values of the parameter. The unit tangent vector taken as a curve traces the spherical image of the original curve.
For example, suppose we want to find the integral ∫ 0 ∞ x 2 e − 3 x d x . {\displaystyle \int _{0}^{\infty }x^{2}e^{-3x}\,dx.} Since this is a product of two functions that are simple to integrate separately, repeated integration by parts is certainly one way to evaluate it.
Examples of the latter include the Dirac delta function and distributions defined to act by integration of test functions against certain measures on . Nonetheless, it is still always possible to reduce any arbitrary distribution down to a simpler family of related distributions that do arise via such actions of integration.
One example of an optimization problem is: Find the shortest curve between two points on a surface, assuming that the curve must also lie on the surface. If the surface is a plane, then the shortest curve is a line. But if the surface is, for example, egg-shaped, then the shortest path is not immediately clear.
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.
The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.
In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (strong derivative) for functions not assumed differentiable, but only integrable, i.e., to lie in the L p space ([,]).