enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rise time - Wikipedia

    en.wikipedia.org/wiki/Rise_time

    Rise time of damped second order systems [ edit ] According to Levine (1996 , p. 158), for underdamped systems used in control theory rise time is commonly defined as the time for a waveform to go from 0% to 100% of its final value: [ 6 ] accordingly, the rise time from 0 to 100% of an underdamped 2nd-order system has the following form: [ 21 ]

  3. Transient response - Wikipedia

    en.wikipedia.org/wiki/Transient_response

    Typical second order transient system properties. Transient response can be quantified with the following properties. Rise time Rise time refers to the time required for a signal to change from a specified low value to a specified high value. Typically, these values are 10% and 90% of the step height.

  4. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    Settling time depends on the system response and natural frequency. The settling time for a second order , underdamped system responding to a step response can be approximated if the damping ratio ζ ≪ 1 {\displaystyle \zeta \ll 1} by T s = − ln ⁡ ( tolerance fraction ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln ...

  5. Overshoot (signal) - Wikipedia

    en.wikipedia.org/wiki/Overshoot_(signal)

    A circuit is designed to minimize rise time while containing distortion of the signal within acceptable limits. Overshoot represents a distortion of the signal. In circuit design, the goals of minimizing overshoot and of decreasing circuit rise time can conflict. The magnitude of overshoot depends on time through a phenomenon called "damping."

  6. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    A typical step response for a second order system, illustrating overshoot, followed by ringing, all subsiding within a settling time.. The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions.

  7. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  8. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The effect of varying damping ratio on a second-order system. The damping ratio is a parameter, usually denoted by ζ (Greek letter zeta), [7] that characterizes the frequency response of a second-order ordinary differential equation. It is particularly important in the study of control theory. It is also important in the harmonic oscillator ...

  9. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    The system analysis is carried out in the time domain using differential equations, in the complex-s domain with the Laplace transform, or in the frequency domain by transforming from the complex-s domain. Many systems may be assumed to have a second order and single variable system response in the time domain.