enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iterator - Wikipedia

    en.wikipedia.org/wiki/Iterator

    An example of a Python generator returning an iterator for the Fibonacci numbers using Python's yield statement follows: def fibonacci ( limit ): a , b = 0 , 1 for _ in range ( limit ): yield a a , b = b , a + b for number in fibonacci ( 100 ): # The generator constructs an iterator print ( number )

  3. Tacit programming - Wikipedia

    en.wikipedia.org/wiki/Tacit_programming

    Here, [0,1] is the initial pair to be taken as the first two items in the Fibonacci sequence. (The pair [1,1] could likewise be used for the variant definition.) The alphabetic tokens are built-in filters: `first` and `last` emit the first and last elements of their input arrays respectively; and `recurse(f)` applies a filter, f, to its input ...

  4. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers , commonly denoted F n .

  5. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the ...

  6. Aggregate pattern - Wikipedia

    en.wikipedia.org/wiki/Aggregate_pattern

    def fibonacci (n: int): a, b = 0, 1 count = 0 while count < n: count += 1 a, b = b, a + b yield a for x in fibonacci (10): print (x) def fibsum (n: int)-> int: total = 0 for x in fibonacci (n): total += x return total def fibsum_alt (n: int)-> int: """ Alternate implementation. demonstration that Python's built-in function sum() works with arbitrary iterators. """ return sum (fibonacci (n ...

  7. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    Each rectangle has a Fibonacci number F j as width (blue number in the center) and F j−1 as height. The vertical bands have width 10. The vertical bands have width 10. In mathematics , Zeckendorf's theorem , named after Belgian amateur mathematician Edouard Zeckendorf , is a theorem about the representation of integers as sums of Fibonacci ...

  8. Lagged Fibonacci generator - Wikipedia

    en.wikipedia.org/wiki/Lagged_Fibonacci_generator

    A Lagged Fibonacci generator (LFG or sometimes LFib) is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence ...

  9. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...