enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sieve of Sundaram - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Sundaram

    The sieve starts with a list of the integers from 1 to n. From this list, all numbers of the form i + j + 2ij are removed, where i and j are positive integers such that 1 ≤ i ≤ j and i + j + 2ij ≤ n. The remaining numbers are doubled and incremented by one, giving a list of the odd prime numbers (that is, all primes except 2) below 2n + 2.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve of Pritchard - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Pritchard

    1 2 3 5. The first number after 1 for wheel 2 is 5; note it as a prime. Now form wheel 3 with length 5 × 6 = 30 by first extending wheel 2 up to 30 and then deleting 5 times each number in wheel 2 (in reverse order!), to get 1 2 3 5 7 11 13 17 19 23 25 29. The first number after 1 for wheel 3 is 7; note it as a prime. Now wheel 4 has length 7 ...

  5. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  6. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...

  7. Safe and Sophie Germain primes - Wikipedia

    en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes

    A prime number q is a strong prime if q + 1 and q1 both have some large (around 500 digits) prime factors. For a safe prime q = 2p + 1, the number q1 naturally has a large prime factor, namely p, and so a safe prime q meets part of the criteria for being a strong prime. The running times of some methods of factoring a number with q as ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    Let {q 1, q 2, …} be successive prime numbers in the interval (B 1, B 2] and d n = q n − q n−1 the difference between consecutive prime numbers. Since typically B 1 > 2, d n are even numbers. The distribution of prime numbers is such that the d n will all be relatively small. It is suggested that d n ≤ ln 2 B 2. Hence, the values of H 2 ...