Search results
Results from the WOW.Com Content Network
The Golgi apparatus (/ ˈ ɡ ɒ l dʒ i /), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. [1] Part of the endomembrane system in the cytoplasm, it packages proteins into membrane-bound vesicles inside the cell before the vesicles are sent to their destination.
The Golgi tendon organ (GTO) (also called Golgi organ, tendon organ, neurotendinous organ or neurotendinous spindle) is a proprioceptor – a type of sensory receptor that senses changes in muscle tension. It lies at the interface between a muscle and its tendon known as the musculotendinous junction also known as the myotendinous junction. [1]
The Golgi apparatus (also known as the Golgi body and the Golgi complex) is composed of separate sacs called cisternae. Its shape is similar to a stack of pancakes. The number of these stacks varies with the specific function of the cell. The Golgi apparatus is used by the cell for further protein modification.
The trans-Golgi network is an important part of the Golgi. It is located on the trans face of the Golgi apparatus and is made up of cisternae. The cisternae play a crucial role in the packaging, modification, and transport functions for the cell overall.
Golgi apparatus (also called the Golgi body, Golgi complex, or dictyosome), an organelle in a eukaryotic cell; Golgi tendon organ, a proprioceptive sensory receptor organ; Golgi's method or Golgi stain, a nervous tissue staining technique; Golgi alpha-mannosidase II, an enzyme; Golgi cell, a type of interneuron found in the cerebellum
In eukaryotes, it occurs in the endoplasmic reticulum, Golgi apparatus and occasionally in the cytoplasm; in prokaryotes, it occurs in the cytoplasm. [1] Several different sugars can be added to the serine or threonine, and they affect the protein in different ways by changing protein stability and regulating protein activity.
It is a cap-like structure derived from the Golgi apparatus. In placental mammals, the acrosome contains degradative enzymes (including hyaluronidase and acrosin). [1] These enzymes break down the outer membrane of the ovum, [2] called the zona pellucida, allowing the haploid nucleus in the sperm cell to join with the haploid nucleus in the ovum.
These are areas where the transport vesicles which contain lipids and proteins made in the ER, detach from the ER and start moving to the Golgi apparatus. Specialized cells can have a lot of smooth endoplasmic reticulum and in these cells the smooth ER has many functions. [ 6 ]