Search results
Results from the WOW.Com Content Network
The solutions of the quadratic equation ax 2 + bx + c = 0 correspond to the roots of the function f(x) = ax 2 + bx + c, since they are the values of x for which f(x) = 0. If a, b, and c are real numbers and the domain of f is the set of real numbers, then the roots of f are exactly the x-coordinates of the points where the graph touches the x-axis.
The quadratic formula can equivalently be written using various alternative expressions, for instance = (), which can be derived by first dividing a quadratic equation by , resulting in + + = , then substituting the new coefficients into the standard quadratic formula.
where x is the variable, and a, b, and c represent the coefficients. Such polynomials often arise in a quadratic equation a x 2 + b x + c = 0. {\displaystyle ax^{2}+bx+c=0.} The solutions to this equation are called the roots and can be expressed in terms of the coefficients as the quadratic formula .
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
where p ∈ Z[X] and c ∈ Z: it suffices to take for c a multiple of all denominators of the coefficients of q (for example their product) and p = cq. The content of q is defined as: = (), and the primitive part of q is that of p. As for the polynomials with integer coefficients, this defines a factorization into a rational number and a ...
The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry. The discriminant of the quadratic polynomial a x 2 + b x + c {\displaystyle ax^{2}+bx+c} is b 2 − 4 a c , {\displaystyle b^{2}-4ac,}
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
Lagrange's method can be applied directly to the general cubic equation ax 3 + bx 2 + cx + d = 0, but the computation is simpler with the depressed cubic equation, t 3 + pt + q = 0. Lagrange's main idea was to work with the discrete Fourier transform of the roots instead of with the roots themselves.