enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...

  3. Combination - Wikipedia

    en.wikipedia.org/wiki/Combination

    These combinations (subsets) are enumerated by the 1 digits of the set of base 2 numbers counting from 0 to 2 n − 1, where each digit position is an item from the set of n. Given 3 cards numbered 1 to 3, there are 8 distinct combinations , including the empty set:

  4. Combinatorial number system - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_number_system

    The number associated in the combinatorial number system of degree k to a k-combination C is the number of k-combinations strictly less than C in the given ordering. This number can be computed from C = {c k, ..., c 2, c 1} with c k > ... > c 2 > c 1 as follows.

  5. Composition (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Composition_(combinatorics)

    Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number! Note that these are not general compositions as defined above because the numbers are restricted to 1's and 2's only. 1=1 (1) 2=1+1=2 (2) 3=1+1+1=1+2=2+1 (3)

  6. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    Rather, as explained under combinations, the number of n-multicombinations from a set with x elements can be seen to be the same as the number of n-combinations from a set with x + n − 1 elements. This reduces the problem to another one in the twelvefold way, and gives as result

  7. Combinatorics - Wikipedia

    en.wikipedia.org/wiki/Combinatorics

    Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.

  8. Combinatorial proof - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_proof

    An archetypal double counting proof is for the well known formula for the number () of k-combinations (i.e., subsets of size k) of an n-element set: = (+) ().Here a direct bijective proof is not possible: because the right-hand side of the identity is a fraction, there is no set obviously counted by it (it even takes some thought to see that the denominator always evenly divides the numerator).

  9. Enumerative combinatorics - Wikipedia

    en.wikipedia.org/wiki/Enumerative_combinatorics

    Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers, enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n.