enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phase-contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_microscopy

    This leads to the foreground (blue vector) and background (red vector) having nearly the same intensity, resulting in low image contrast. In a phase-contrast microscope, image contrast is increased in two ways: by generating constructive interference between scattered and background light rays in regions of the field of view that contain the ...

  3. Differential interference contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Differential_interference...

    The process of image production in a DIC microscope. The image has the appearance of a three-dimensional object under very oblique illumination, causing strong light and dark shadows on the corresponding faces. The direction of apparent illumination is defined by the orientation of the Wollaston prisms.

  4. Phase-contrast imaging - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_imaging

    The advantages of these methods compared to normal absorption-contrast X-ray imaging is higher contrast for low-absorbing materials (because phase shift is a different mechanism than absorption) and a contrast-to-noise relationship that increases with spatial frequency (because many phase-contrast techniques detect the first or second ...

  5. Phase-contrast X-ray imaging - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_X-ray_imaging

    X-ray absorption (left) and differential phase-contrast (right) image of an in-ear headphone obtained with a grating interferometer at 60kVp. Phase-contrast X-ray imaging or phase-sensitive X-ray imaging is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images.

  6. Fluorescence interference contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_interference...

    With the sample system built, all that is needed is an epifluorescence microscope and a CCD camera to make quantitative intensity measurements. This is a diagram of an example FLIC experimental setup with silicon, three oxide layers and a fluorescently labeled lipid bilayer (the yellow stars represent fluorophores.

  7. Interference reflection microscopy - Wikipedia

    en.wikipedia.org/wiki/Interference_reflection...

    Interference reflection microscopy (IRM), also called Reflection Interference Contrast Microscopy (RICM) or Reflection Contrast Microscopy (RCM) depending on the specific optical elements used, is an optical microscopy technique that leverages thin-film interference effects to form an image of an object on a glass surface.

  8. Scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_transmission...

    A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused ...

  9. Bright-field microscopy - Wikipedia

    en.wikipedia.org/wiki/Bright-field_microscopy

    The practical limit to magnification with a light microscope is around 1300×. Higher magnifications are possible, but it becomes increasingly difficult to maintain image clarity as the magnification increases. [17] Bright-field microscopes have low apparent optical resolution due to the blur of out-of-focus material;