enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phase-contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_microscopy

    This leads to the foreground (blue vector) and background (red vector) having nearly the same intensity, resulting in low image contrast. In a phase-contrast microscope, image contrast is increased in two ways: by generating constructive interference between scattered and background light rays in regions of the field of view that contain the ...

  3. Differential interference contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Differential_interference...

    Micrasterias furcata imaged in transmitted DIC microscopy Laser-induced optical damage in LiNbO 3 under 150× Nomarski microscopy. Differential interference contrast (DIC) microscopy, also known as Nomarski interference contrast (NIC) or Nomarski microscopy, is an optical microscopy technique used to enhance the contrast in unstained, transparent samples.

  4. Fluorescence interference contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_interference...

    With the sample system built, all that is needed is an epifluorescence microscope and a CCD camera to make quantitative intensity measurements. This is a diagram of an example FLIC experimental setup with silicon, three oxide layers and a fluorescently labeled lipid bilayer (the yellow stars represent fluorophores.

  5. Phase-contrast imaging - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_imaging

    The advantages of these methods compared to normal absorption-contrast X-ray imaging is higher contrast for low-absorbing materials (because phase shift is a different mechanism than absorption) and a contrast-to-noise relationship that increases with spatial frequency (because many phase-contrast techniques detect the first or second ...

  6. Contrast transfer function - Wikipedia

    en.wikipedia.org/wiki/Contrast_transfer_function

    The form of the contrast transfer function determines the quality of real space image formation in the TEM. CTF Function prepared via web applet created by Jiang and Chiu, available at https://ctfsimulation.streamlit.app/ This is an example contrast transfer function. There are a number of things to note:

  7. Interference reflection microscopy - Wikipedia

    en.wikipedia.org/wiki/Interference_reflection...

    Interference reflection microscopy (IRM), also called Reflection Interference Contrast Microscopy (RICM) or Reflection Contrast Microscopy (RCM) depending on the specific optical elements used, is an optical microscopy technique that leverages thin-film interference effects to form an image of an object on a glass surface.

  8. Interference microscopy - Wikipedia

    en.wikipedia.org/wiki/Interference_microscopy

    This optics -related article is a stub. You can help Wikipedia by expanding it.

  9. Live-cell imaging - Wikipedia

    en.wikipedia.org/wiki/Live-cell_imaging

    After its introduction in the 1940s, live-cell imaging rapidly became popular using phase-contrast microscopy. [11] The phase-contrast microscope was popularized through a series of time-lapse movies (see video), recorded using a photographic film camera. [12] Its inventor, Frits Zernike, was awarded the Nobel Prize in 1953. [13]