Search results
Results from the WOW.Com Content Network
The SLP prompting procedure uses and removes prompts by moving through a hierarchy from less to more restrictive prompts. [2] [3] [4] If the student emits the correct behavior at any point during this instructional trial [5] (with or without prompts), reinforcement is provided. The system of least prompts gives the learner the opportunity to ...
Prompt injection is a family of related computer security exploits carried out by getting a machine learning model (such as an LLM) which was trained to follow human-given instructions to follow instructions provided by a malicious user. This stands in contrast to the intended operation of instruction-following systems, wherein the ML model is ...
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.
Retrieval-Augmented Generation (RAG) is a technique that grants generative artificial intelligence models information retrieval capabilities. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to augment information drawn from its own vast, static training data.
Instead, one removes the task head and replaces it with a newly initialized module suited for the task, and finetune the new module. The latent vector representation of the model is directly fed into this new module, allowing for sample-efficient transfer learning. [1] [8] Encoder-only attention is all-to-all.
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
A language model is a probabilistic model of a natural language. [1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.
[3] [4] [5] RLHF has applications in various domains in machine learning, including natural language processing tasks such as text summarization and conversational agents, computer vision tasks like text-to-image models, and the development of video game bots. While RLHF is an effective method of training models to act better in accordance with ...