Search results
Results from the WOW.Com Content Network
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
When dealing with both positive and negative extended real numbers, the expression / is usually left undefined, because, although it is true that for every real nonzero sequence that converges to 0, the reciprocal sequence / is eventually contained in every neighborhood of {,}, it is not true that the sequence / must itself converge to either or .
The standard part function can also be defined for infinite hyperreal numbers as follows: If x is a positive infinite hyperreal number, set st(x) to be the extended real number +, and likewise, if x is a negative infinite hyperreal number, set st(x) to be (the idea is that an infinite hyperreal number should be smaller than the "true" absolute ...
If the degree of p and q are equal, the limit is the leading coefficient of p divided by the leading coefficient of q; If the degree of p is less than the degree of q, the limit is 0. If the limit at infinity exists, it represents a horizontal asymptote at y = L. Polynomials do not have horizontal asymptotes; such asymptotes may however occur ...
Depending on the type of singularity in the integrand f, the Cauchy principal value is defined according to the following rules: . For a singularity at a finite number b + [() + + ()] with < < and where b is the difficult point, at which the behavior of the function f is such that = for any < and = for any >.
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x , denoted ⌈ x ⌉ or ceil( x ) .
In mathematics, infinity plus one is a concept which has a well-defined formal meaning in some number systems, and may refer to: Transfinite numbers, numbers that are larger than all the finite numbers. Cardinal numbers, representations of sizes (cardinalities) of abstract sets, which may be infinite.
Coverage of this topic in Smithsonian magazine describes the Numberphile video as misleading and notes that the interpretation of the sum as − + 1 / 12 relies on a specialized meaning for the equals sign, from the techniques of analytic continuation, in which equals means is associated with. [35]