Search results
Results from the WOW.Com Content Network
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
The new axiom is Lobachevsky's parallel postulate (also known as the characteristic postulate of hyperbolic geometry): [75] Through a point not on a given line there exists (in the plane determined by this point and line) at least two lines which do not meet the given line. With this addition, the axiom system is now complete.
Axioms of continuity and "betweenness" are also optional, for example, discrete geometries may be created by discarding or modifying them. Following the Erlangen program of Klein , the nature of any given geometry can be seen as the connection between symmetry and the content of the propositions, rather than the style of development.
This method resembles the modern axiomatic method but with a big philosophical difference: axioms and postulates were supposed to be true, being either self-evident or resulting from experiments, while no other truth than the correctness of the proof is involved in the axiomatic method. So, for Aristotle, a proved theorem is true, while in the ...
The essential difference between the metric geometries is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line l and a point A, which is not on l, there is exactly one line through A that does not intersect l.
A first principle is an axiom that cannot be deduced from any other within that system. The classic example is that of Euclid's Elements; its hundreds of geometric propositions can be deduced from a set of definitions, postulates, and common notions: all three types constitute first principles.
The distinction between different terms is sometimes rather arbitrary, and the usage of some terms has evolved over time. An axiom or postulate is a fundamental assumption regarding the object of study, that is accepted without proof. A related concept is that of a definition, which gives the meaning of a word or a phrase in terms of known ...