Search results
Results from the WOW.Com Content Network
The first research on the topic of how the ear hears different frequencies at different levels was conducted by Fletcher and Munson in 1933. Until recently, it was common to see the term Fletcher–Munson used to refer to equal-loudness contours generally, even though a re-determination was carried out by Robinson and Dadson in 1956, which became the basis for an ISO 226 standard.
HF's position in the electromagnetic spectrum.. High frequency (HF) is the ITU designation [1] for the band of radio waves with frequency between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters (ten to one hundred meters).
An audio frequency or audible frequency (AF) is a periodic vibration whose frequency is audible to the average human. The SI unit of frequency is the hertz (Hz). It is the property of sound that most determines pitch. [1] The generally accepted standard hearing range for humans is 20 to 20,000 Hz.
Traditionally in Western music, a musical tone is a steady periodic sound. A musical tone is characterized by its duration, pitch, intensity (or loudness), and timbre (or quality). [1] The notes used in music can be more complex than musical tones, as they may include aperiodic aspects, such as attack transients, vibrato, and envelope modulation.
The curve is much shallower in the high frequencies than in the low frequencies. This flattening is called upward spread of masking and is why an interfering sound masks high frequency signals much better than low frequency signals. [1] Figure B also shows that as the masker frequency increases, the masking patterns become increasingly compressed.
When a bandpass signal is sampled slower than its Nyquist rate, the samples are indistinguishable from samples of a low-frequency alias of the high-frequency signal. That is often done purposefully in such a way that the lowest-frequency alias satisfies the Nyquist criterion, because the bandpass signal is still uniquely represented and ...
Musical sound can be more complicated than human vocal sound, occupying a wider band of frequency. Music signals are time-varying signals; while the classic Fourier transform is not sufficient to analyze them, time–frequency analysis is an efficient tool for such use. Time–frequency analysis is extended from the classic Fourier approach.
Vibration and standing waves in a string, The fundamental and the first six overtones. The fundamental frequency, often referred to simply as the fundamental (abbreviated as f 0 or f 1), is defined as the lowest frequency of a periodic waveform. [1] In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial ...