Search results
Results from the WOW.Com Content Network
Most often the elements in PWMs are calculated as log odds. That is, the elements of a PPM are transformed using a background model so that: , = (, /). describes how an element in the PWM (left), ,, can be calculated. The simplest background model assumes that each letter appears equally frequently in the dataset.
In mathematics, computer science and especially graph theory, a distance matrix is a square matrix (two-dimensional array) containing the distances, taken pairwise, between the elements of a set. [1] Depending upon the application involved, the distance being used to define this matrix may or may not be a metric .
In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.
Vectorization is used in matrix calculus and its applications in establishing e.g., moments of random vectors and matrices, asymptotics, as well as Jacobian and Hessian matrices. [5] It is also used in local sensitivity and statistical diagnostics.
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
The identity matrices (which are the square matrices whose entries are zero outside of the main diagonal and 1 on the main diagonal) are identity elements of the matrix product. It follows that the n × n matrices over a ring form a ring, which is noncommutative except if n = 1 and the ground ring is commutative.
Hankel matrices are formed when, given a sequence of output data, a realization of an underlying state-space or hidden Markov model is desired. [3] The singular value decomposition of the Hankel matrix provides a means of computing the A, B, and C matrices which define the state-space realization. [4]
4. Every network matrix is TU. The rows of a network matrix correspond to a tree T = (V, R), each of whose arcs has an arbitrary orientation (it is not necessary that there exist a root vertex r such that the tree is "rooted into r" or "out of r").The columns correspond to another set C of arcs on the same vertex set V.