Search results
Results from the WOW.Com Content Network
Shredding refers to the process in bioinformatics of taking assembled gene sequences and disassembling them into short sequences of usually 500 to 750 base pairs (bp). This is generally done for the purpose of taking the short shredded sequences and reapplying various analysis and bioinformatic techniques.
Tomographic reconstruction: Projection, Back projection and Filtered back projection. Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon.
X-ray reflectivity (sometimes known as X-ray specular reflectivity, X-ray reflectometry, or XRR) is a surface-sensitive analytical technique used in chemistry, physics, and materials science to characterize surfaces, thin films and multilayers.
X-ray optics is the branch of optics dealing with X-rays, rather than visible light.It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction, X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.
Natural color X-ray photogram of a wine scene. Note the edges of hollow cylinders as compared to the solid candle. William Coolidge explains medical imaging and X-rays.. An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays.
The history of X-ray microscopy can be traced back to the early 20th century. After the German physicist Röntgen discovered X-rays in 1895, scientists soon illuminated an object using an X-ray point source and captured the shadow images of the object with a resolution of several micrometers. [2]
For premium support please call: 800-290-4726 more ways to reach us
X-ray lithography is a process used in semiconductor device fabrication industry to selectively remove parts of a thin film of photoresist. It uses X-rays to transfer a geometric pattern from a mask to a light-sensitive chemical photoresist , or simply "resist," on the substrate to reach extremely small topological size of a feature.