enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Non-covalent interaction - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interaction

    The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 10 23 molecules). [2] Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2]

  3. Covalent bond - Wikipedia

    en.wikipedia.org/wiki/Covalent_bond

    In organic chemistry, covalent bonding is much more common than ionic bonding. Covalent bonding also includes many kinds of interactions, including σ-bonding, π-bonding, metal-to-metal bonding, agostic interactions, bent bonds, three-center two-electron bonds and three-center four-electron bonds. [2] [3] The term covalent bond dates from 1939 ...

  4. Supramolecular polymer - Wikipedia

    en.wikipedia.org/wiki/Supramolecular_polymer

    Supramolecular polymers are a subset of polymers where the monomeric units are connected by reversible and highly directional secondary interactions–that is, non-covalent bonds. These non-covalent interactions include van der Waals interactions, hydrogen bonding, Coulomb or ionic interactions, π-π stacking, metal coordination, halogen ...

  5. Bonding in solids - Wikipedia

    en.wikipedia.org/wiki/Bonding_in_solids

    A solid with extensive hydrogen bonding will be considered a molecular solid, yet strong hydrogen bonds can have a significant degree of covalent character. As noted above, covalent and ionic bonds form a continuum between shared and transferred electrons; covalent and weak bonds form a continuum between shared and unshared electrons.

  6. Molecular binding - Wikipedia

    en.wikipedia.org/wiki/Molecular_binding

    Irreversible covalent – a chemical bond is formed in which the product is thermodynamically much more stable than the reactants such that the reverse reaction does not take place. Bound molecules are sometimes called a "molecular complex"—the term generally refers to non-covalent associations. [2]

  7. Host–guest chemistry - Wikipedia

    en.wikipedia.org/wiki/Host–guest_chemistry

    Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent bonding. Non-covalent bonding is critical in maintaining the 3D structure of large molecules, such as proteins and is involved in many biological processes in which large molecules bind specifically but transiently to one another.

  8. Supramolecular chemistry - Wikipedia

    en.wikipedia.org/wiki/Supramolecular_chemistry

    Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules.The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the ...

  9. Molecular self-assembly - Wikipedia

    en.wikipedia.org/wiki/Molecular_self-assembly

    Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.