enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    A finite regular continued fraction, where is a non-negative integer, is an integer, and is a positive integer, for . A continued fraction is a mathematical expression that can be writen as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple ...

  3. Continued fraction (generalized) - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction...

    Another meaning for generalized continued fraction is a generalization to higher dimensions. For example, there is a close relationship between the simple continued fraction in canonical form for the irrational real number α, and the way lattice points in two dimensions lie to either side of the line y = αx. Generalizing this idea, one might ...

  4. Euler's continued fraction formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_continued_fraction...

    Euler derived the formula as connecting a finite sum of products with a finite continued fraction. (+ (+ (+))) = + + + + = + + + +The identity is easily established by induction on n, and is therefore applicable in the limit: if the expression on the left is extended to represent a convergent infinite series, the expression on the right can also be extended to represent a convergent infinite ...

  5. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    Solving quadratic equations with continued fractions. In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is. where a ≠ 0. The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots ...

  6. Rogers–Ramanujan continued fraction - Wikipedia

    en.wikipedia.org/wiki/Rogers–Ramanujan...

    The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument. Domain coloring representation of the convergent of the function , where is ...

  7. Silver ratio - Wikipedia

    en.wikipedia.org/wiki/Silver_ratio

    The silver ratio is a Pisot–Vijayaraghavan number (PV number), as its conjugate 1 − √ 2 = ⁠ −1 δS⁠ ≈ −0.41421 has absolute value less than 1. In fact it is the second smallest quadratic PV number after the golden ratio. This means the distance from δ n. S to the nearest integer is ⁠ 1 δ n.

  8. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The consistently small terms in its continued fraction explain why the approximants converge so slowly. This makes the golden ratio an extreme case of the Hurwitz inequality for Diophantine approximations, which states that for every irrational , there are infinitely many distinct fractions / such that,

  9. Gauss's continued fraction - Wikipedia

    en.wikipedia.org/wiki/Gauss's_continued_fraction

    In complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions. It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions , as well as some of the more complicated transcendental functions .