Search results
Results from the WOW.Com Content Network
The free monoid on a set A is usually denoted A ∗. The free semigroup on A is the subsemigroup of A ∗ containing all elements except the empty string. It is usually denoted A +. [1] [2] More generally, an abstract monoid (or semigroup) S is described as free if it is isomorphic to the free monoid (or semigroup) on some set. [3]
Many definitions and theorems about monoids can be generalised to small categories with more than one object. For example, a quotient of a category with one object is just a quotient monoid. Monoids, just like other algebraic structures, also form their own category, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms. [8]
The set of all finite strings over a fixed alphabet Σ with concatenation of strings as the semigroup operation – the so-called "free semigroup over Σ". With the empty string included, this semigroup becomes the free monoid over Σ. A probability distribution F together with all convolution powers of F, with convolution as the operation ...
Let denote the free monoid on a set of generators , that is, the set of all strings written in the alphabet .The asterisk is a standard notation for the Kleene star.An independency relation on the alphabet then induces a symmetric binary relation on the set of strings : two strings , are related, , if and only if there exist ,, and a pair (,) such that = and =.
For example, the alphabet {a, b} with the rules { ab → ε, ba → ε }, where ε is the empty string, is a presentation of the free group on one generator. If instead the rules are just { ab → ε }, then we obtain a presentation of the bicyclic monoid. The importance of semi-Thue systems as presentation of monoids is made stronger by the ...
Numerical semigroups are commutative monoids and are also known as numerical monoids. [ 1 ] [ 2 ] The definition of numerical semigroup is intimately related to the problem of determining nonnegative integers that can be expressed in the form x 1 n 1 + x 2 n 2 + ... + x r n r for a given set { n 1 , n 2 , ..., n r } of positive integers and for ...
If the first line is correct in it being all the finite sequences then the free monoid must be finite. How then can the natural numbers under addition be a free monoid as the set of natural numbers is not finite. — Preceding unsigned comment added by 80.229.45.38 10:18, 28 October 2020 (UTC) Each individual natural number is finite.
Vf or VF may stand for: Arts and entertainment ... Video floppy, an analog floppy diskette format to store still images This page was last edited on 11 ...