enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular Hamiltonian - Wikipedia

    en.wikipedia.org/wiki/Molecular_Hamiltonian

    Here is the nabla operator, a vector operator consisting of first derivatives. The well-known commutation relations for the p and q operators follow directly from the differentiation rules. Classically the electrons and nuclei in a molecule have kinetic energy of the form p 2 /(2 m ) and interact via Coulomb interactions , which are inversely ...

  3. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(quantum...

    The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of all particles associated with the system. . The Hamiltonian takes different forms and can be simplified in some cases by taking into account the concrete characteristics of the system under analysis, such as single or several particles in the system, interaction ...

  4. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    The operator is said to be positive-definite, and written >, if , >, for all ⁡ {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.

  5. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The density operator of a mixed state is a trace class, nonnegative (positive semi-definite) self-adjoint operator ρ normalized to be of trace 1. In turn, any density operator of a mixed state can be represented as a subsystem of a larger composite system in a pure state (see purification theorem ).

  6. Hückel method - Wikipedia

    en.wikipedia.org/wiki/Hückel_method

    Molecules with molecular orbitals paired up such that only the sign differs (for example α ± β) are called alternant hydrocarbons and have in common small molecular dipole moments. This is in contrast to non-alternant hydrocarbons, such as azulene and fulvene that have large dipole moments .

  7. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    A further property of a Hermitian operator is that eigenfunctions corresponding to different eigenvalues are orthogonal. [1] In matrix form, operators allow real eigenvalues to be found, corresponding to measurements. Orthogonality allows a suitable basis set of vectors to represent the state of the quantum system.

  8. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).

  9. Quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Quantum_mechanics

    The operator () = / is known as the time-evolution operator, and has the crucial property that it is unitary. This time evolution is deterministic in the sense that – given an initial quantum state ψ ( 0 ) {\displaystyle \psi (0)} – it makes a definite prediction of what the quantum state ψ ( t ) {\displaystyle \psi (t)} will be at any ...

  1. Related searches positive operator is hermitian or base 10 formula for the number of molecules

    positive operator wikipediawhat is a positive operator