enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    The operator is said to be positive-definite, and written >, if , >, for all ⁡ {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.

  3. Hermite polynomials - Wikipedia

    en.wikipedia.org/wiki/Hermite_polynomials

    Equivalently, it is the number of involutions of an n-element set with precisely k fixed points, or in other words, the number of matchings in the complete graph on n vertices that leave k vertices uncovered (indeed, the Hermite polynomials are the matching polynomials of these graphs).

  4. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).

  5. Molecular Hamiltonian - Wikipedia

    en.wikipedia.org/wiki/Molecular_Hamiltonian

    Here is the nabla operator, a vector operator consisting of first derivatives. The well-known commutation relations for the p and q operators follow directly from the differentiation rules. Classically the electrons and nuclei in a molecule have kinetic energy of the form p 2 /(2 m ) and interact via Coulomb interactions , which are inversely ...

  6. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    If A is Hermitian and Ax, x ≥ 0 for every x, then A is called 'nonnegative', written A ≥ 0; if equality holds only when x = 0, then A is called 'positive'. The set of self adjoint operators admits a partial order, in which A ≥ B if A − B ≥ 0. If A has the form B*B for some B, then A is nonnegative; if B is invertible, then A is positive.

  7. Fock matrix - Wikipedia

    en.wikipedia.org/wiki/Fock_matrix

    The Fock matrix is actually an approximation to the true Hamiltonian operator of the quantum system. It includes the effects of electron-electron repulsion only in an average way. Because the Fock operator is a one-electron operator, it does not include the electron correlation energy. The Fock matrix is defined by the Fock operator.

  8. Ladder operator - Wikipedia

    en.wikipedia.org/wiki/Ladder_operator

    The operator X is a raising operator for N if c is real and positive, and a lowering operator for N if c is real and negative. If N is a Hermitian operator, then c must be real, and the Hermitian adjoint of X obeys the commutation relation [, †] = †.

  9. Fock state - Wikipedia

    en.wikipedia.org/wiki/Fock_state

    We also define the total number operator for the field which is a sum of number operators of each mode: ^ = ^ The multi-mode Fock state is an eigenvector of the total number operator whose eigenvalue is the total occupation number of all the modes

  1. Related searches positive operator is hermitian or base 10 formula for the number of moles

    hermite orthogonal formulahermitic polynomial formula