Search results
Results from the WOW.Com Content Network
Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]
DeepFace is a deep learning facial recognition system created by a research group at Facebook. It identifies human faces in digital images. It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.
Tesseract is an optical character recognition engine for various operating systems. [5] It is free software, released under the Apache License. [1] [6] [7] Originally developed by Hewlett-Packard as proprietary software in the 1980s, it was released as open source in 2005 and development was sponsored by Google in 2006.
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
On average only 0.01% of all sub-windows are positive (faces) Equal computation time is spent on all sub-windows; Must spend most time only on potentially positive sub-windows. A simple 2-feature classifier can achieve almost 100% detection rate with 50% FP rate. That classifier can act as a 1st layer of a series to filter out most negative windows
Automatic face detection with OpenCV. Face detection is a computer technology being used in a variety of applications that identifies human faces in digital images. [1] Face detection also refers to the psychological process by which humans locate and attend to faces in a visual scene.
ISO/IEC 19794 Information technology—Biometric data interchange formats—Part 5: Face image data, or ISO/IEC 19794-5 for short, is the fifth of 8 parts of the ISO/IEC standard ISO/IEC 19794, published in 2005, which describes interchange formats for several types of biometric data.
Facial recognition software at a US airport Automatic ticket gate with face recognition system in Osaka Metro Morinomiya Station. A facial recognition system [1] is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces.