Search results
Results from the WOW.Com Content Network
Cytokinesis (/ ˌ s aɪ t oʊ k ɪ ˈ n iː s ɪ s /) is the part of the cell division process and part of mitosis during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division in mitosis and meiosis.
The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3. Cell division is the process by which a parent cell divides into two daughter cells. [1] Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing.
The primary result of mitosis and cytokinesis is the transfer of a parent cell's genome into two daughter cells. The genome is composed of a number of chromosomes—complexes of tightly coiled DNA that contain genetic information vital for proper cell function. [32]
Mitosis and cytokinesis together define the division of the parent cell into two daughter cells, genetically identical to each other and to their parent cell. This accounts for approximately 10% of the cell cycle. Because cytokinesis usually occurs in conjunction with mitosis, "mitosis" is often used interchangeably with "M phase".
When G 2 is completed, the cell enters a relatively brief period of nuclear and cellular division, composed of mitosis and cytokinesis, respectively. After the successful completion of mitosis and cytokinesis, both resulting daughter cells re-enter G 1 of interphase. In the cell cycle, interphase is preceded by telophase and cytokinesis of the ...
Mitosis and meiosis are types of cell division. Mitosis occurs in somatic cells, while meiosis occurs in gametes. Mitosis The resultant number of cells in mitosis is twice the number of original cells. The number of chromosomes in the offspring cells is the same as that of the parent cell.
In one, the daughter cells are initially equivalent but a difference is induced by signaling between the cells, from surrounding cells, or from the precursor cell. This mechanism is known as extrinsic asymmetric cell division. In the second mechanism, the prospective daughter cells are inherently different at the time of division of the mother ...
In this type of fission, a multinucleate adult parent undergoes cytokinesis to form two multinucleate (or coenocytic) daughter cells. The daughter cells so produced undergo further mitosis. Opalina and Pelomyxa reproduce in this way.