Search results
Results from the WOW.Com Content Network
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
Brittleness: Ability of a material to break or shatter without significant deformation when under stress; opposite of plasticity, examples: glass, concrete, cast iron, ceramics etc. Bulk modulus: Ratio of pressure to volumetric compression (GPa) or ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume
The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus (E flex) describes the object's tendency to flex when acted upon by a moment. Two other elastic moduli are Lamé's first parameter, λ, and P-wave modulus, M, as used in table of modulus comparisons
Following the example above, if one had a composite material made up of α and β phases under isostress conditions as shown in the figure to the right, the composition Young's modulus would be: = / (+) The isostrain condition implies that under an applied load, both phases experience the same strain but will feel different stress ...
The following table lists the following properties for piezoelectric materials The piezoelectric coefficients (d 33, d 31, d 15 etc.) measure the strain induced by an applied voltage (expressed as meters per volt). High d ij coefficients indicate larger displacements which are needed for motoring transducer devices.
Young's modulus of on the order of several GPa showed that CNTs are in fact very soft in the radial direction. A complete phase diagram giving the transition to the radially collapsed geometry as function of diameter, pressure and number of tube-walls has been produced from semiempirical grounds. [6]
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...