Search results
Results from the WOW.Com Content Network
The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular.
Unit cell of an fcc material. Lattice configuration of the close packed slip plane in an fcc material. The arrow represents the Burgers vector in this dislocation glide system. Slip in face centered cubic (fcc) crystals occurs along the close packed plane. Specifically, the slip plane is of type , and the direction is of type < 1 10>.
The most common example of stacking faults is found in close-packed crystal structures. Face-centered cubic (fcc) structures differ from hexagonal close packed (hcp) structures only in stacking order: both structures have close-packed atomic planes with sixfold symmetry — the atoms form equilateral triangles. When stacking one of these layers ...
The sphere packing problem is the three-dimensional version of a class of ball-packing problems in arbitrary dimensions. In two dimensions, the equivalent problem is packing circles on a plane. In one dimension it is packing line segments into a linear universe. [10]
Beyond the until cell, the extended crystal structure of fluorite continues packing in a face-centered cubic (fcc) packing structure (also known as cubic close-packed or ccp). [5] This pattern of spherical packing follows an ABC pattern, where each successive layer of spheres settles on top of the adjacent hole of the lattice.
The FCC regulates the affiliates, not the networks themselves or cable channels: The affiliates broadcast the networks' content, and cable does not transmit over public airwaves.
Starting Tuesday, broadcasters are required to disclose foreign government-sponsored programming. The Federal Communications Commission (FCC) unanimously adopted the foreign sponsorship ...
Note: the term fcc is often used in synonym for the cubic close-packed or ccp structure occurring in metals. However, fcc stands for a face-centered cubic Bravais lattice, which is not necessarily close-packed when a motif is set onto the lattice points. E.g. the diamond and the zincblende lattices are fcc but not close-packed. Each is ...