Search results
Results from the WOW.Com Content Network
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
The Nyquist–Shannon sampling theorem is an essential principle for digital signal processing linking the frequency range of a signal and the sample rate required to avoid a type of distortion called aliasing. The theorem states that the sample rate must be at least twice the bandwidth of the signal to avoid aliasing.
The Rayleigh bandwidth of a simple radar pulse is defined as the inverse of its duration. For example, a one-microsecond pulse has a Rayleigh bandwidth of one megahertz. [1] The essential bandwidth is defined as the portion of a signal spectrum in the frequency domain which contains most of the energy of the signal. [2]
The Nyquist rate is defined as twice the bandwidth of the signal. Oversampling is capable of improving resolution and signal-to-noise ratio, and can be helpful in avoiding aliasing and phase distortion by relaxing anti-aliasing filter performance requirements. A signal is said to be oversampled by a factor of N if it is sampled at N times the ...
Two prominent differences in performance between the two methods are the bandwidth and the signal-to-noise ratio (S/N ratio). The bandwidth of the digital system is determined, according to the Nyquist frequency, by the sample rate used. The bandwidth of an analog system is dependent on the physical and electronic capabilities of the analog ...
Therefore, with N subcarriers, the total passband bandwidth will be B ≈ N·Δf (Hz). The orthogonality also allows high spectral efficiency, with a total symbol rate near the Nyquist rate for the equivalent baseband signal (i.e., near half the Nyquist rate for the double-side band physical passband signal). Almost the whole available ...
In computing, bandwidth is the maximum rate of data transfer across a given path. Bandwidth may be characterized as network bandwidth, [1] data bandwidth, [2] or digital bandwidth. [3] [4] Bandwidth by definition is the maximum amount of data transmitted through your network at a single given moment. Typically represents the network capacity ...