Search results
Results from the WOW.Com Content Network
A wheeled buffalo figurine—probably a children's toy—from Magna Graecia in archaic Greece [1]. Several organisms are capable of rolling locomotion. However, true wheels and propellers—despite their utility in human vehicles—do not play a significant role in the movement of living things (with the exception of the corkscrew-like flagella of many prokaryotes).
Motile marine animals are commonly called free-swimming, [10] [11] [12] and motile non-parasitic organisms are called free-living. [13] Motility includes an organism's ability to move food through its digestive tract. There are two types of intestinal motility – peristalsis and segmentation. [14]
Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by ...
Page of one of the first works of Biomechanics (De Motu Animalium of Giovanni Alfonso Borelli) in the 17th centuryBiomechanics is the study of the structure, function and motion of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles, [1] using the methods of mechanics. [2]
Humans, like all known things in the universe, are in constant motion; [2]: 8–9 however, aside from obvious movements of the various external body parts and locomotion, humans are in motion in a variety of ways that are more difficult to perceive. Many of these "imperceptible motions" are only perceivable with the help of special tools and ...
The cerebellum also is involved in biological motion processing. [4] A recent study on a patient with developmental agnosia, an impairment in recognizing objects, found that the ability to recognize the form of biological organisms through biological motion remains intact, despite deficiency in perception of non-biological form through motion. [5]
The speed of gliding varies between organisms, and the reversal of direction is seemingly regulated by some sort of internal clock. [2] For example the apicomplexans are able to travel at fast rates between 1–10 μm/s. In contrast Myxococcus xanthus bacteria glide at a rate of 0.08 μm/s. [3] [4]
For example, the main human gaits are bipedal walking and running, but they employ many other gaits occasionally, including a four-legged crawl in tight spaces. In walking, and for many animals running, the motion of legs on either side of the body alternates, i.e. is out of phase.