Search results
Results from the WOW.Com Content Network
Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases.
TDDFT is an extension of density-functional theory (DFT), and the conceptual and computational foundations are analogous – to show that the (time-dependent) wave function is equivalent to the (time-dependent) electronic density, and then to derive the effective potential of a fictitious non-interacting system which returns the same density as ...
The Strictly-Correlated-Electrons (SCE) density functional theory (SCE DFT) approach, originally proposed by Michael Seidl, [1] [2] is a formulation of density functional theory, alternative to the widely used Kohn-Sham DFT, especially aimed at the study of strongly-correlated systems.
In physics and quantum chemistry, specifically density functional theory, the Kohn–Sham equation is the non-interacting Schrödinger equation (more clearly, Schrödinger-like equation) of a fictitious system (the "Kohn–Sham system") of non-interacting particles (typically electrons) that generate the same density as any given system of interacting particles.
which is the other notable building block of orbital-free density functional theory. The problem with the inaccurate modelling of the kinetic energy in the Thomas–Fermi model, as well as other orbital-free density functionals, is circumvented in Kohn–Sham density functional theory with a fictitious system of non-interacting electrons whose ...
The basic methodology is density functional theory (DFT), but the code also allows use of post-DFT corrections such as hybrid functionals mixing DFT and Hartree–Fock exchange (e.g. HSE, [3] PBE0 [4] or B3LYP [5]), many-body perturbation theory (the GW method [6]) and dynamical electronic correlations within the random phase approximation (RPA ...
The aim of the functional was to be very versatile and provide good computational performance and accuracy for energetic and structural problems in both chemistry and solid-state physics. MN12-SX: [29] Screened-exchange (SX) hybrid functional with 25% HF exchange in the short-range and 0% HF exchange in the long-range. MN12-L was intended to be ...
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Pages in category "Density functional theory"