Search results
Results from the WOW.Com Content Network
The rising air creates a low pressure zone near the equator. As the air moves poleward, it cools, becomes denser, and descends at about the 30th parallel, creating a high-pressure area. The descended air then travels toward the equator along the surface, replacing the air that rose from the equatorial zone, closing the loop of the Hadley cell. [3]
A difference in air pressure causes an air displacement and generates the wind. The Coriolis force deflects the air movement to the right in the northern hemisphere and the left in the southern one, which makes the winds parallel to the isobars on an elevation in pressure card. [1] It is also referred as the geostrophic wind. [2]
A valley exit jet is a strong, down-valley, elevated air current that emerges above the intersection of the valley and its adjacent plain. These winds frequently reach speeds of up to 20 m/s (72 km/h; 45 mph) at heights of 40–200 m (130–660 ft) above the ground.
A global atmospheric electrical circuit is the continuous movement of atmospheric charge carriers, such as ions, between an upper conductive layer (often an ionosphere) and surface. The global circuit concept is closely related to atmospheric electricity , but not all atmospheres necessarily have a global electric circuit. [ 2 ]
The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weather features such as clouds and hazes), all retained by Earth's gravity.
The Hadley cell, also known as the Hadley circulation, is a global-scale tropical atmospheric circulation that features air rising near the equator, flowing poleward near the tropopause at a height of 12–15 km (7.5–9.3 mi) above the Earth's surface, cooling and descending in the subtropics at around 25 degrees latitude, and then returning ...
Projected global surface temperature changes relative to 1850–1900, based on CMIP6 multi-model mean changes. The IPCC Sixth Assessment Report defines global mean surface temperature (GMST) as the "estimated global average of near-surface air temperatures over land and sea ice, and sea surface temperature (SST) over ice-free ocean regions, with changes normally expressed as departures from a ...
The qualities of arctic air are developed over ice and snow-covered ground. Arctic air is deeply cold, colder than polar air masses. Arctic air can be shallow in the summer, and rapidly modify as it moves equatorward. [8] Polar air masses develop over higher latitudes over the land or ocean, are very stable, and generally shallower than arctic air.