Search results
Results from the WOW.Com Content Network
Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.
The one-dimensional extent of an object metre (m) L: extensive: Mass: m: A measure of resistance to acceleration: kilogram (kg) M: extensive, scalar: Time: t: The duration of an event: second (s) T: scalar, intensive, extensive: Electric current: I: Rate of flow of electrical charge per unit time: ampere (A) I: extensive, scalar: Temperature: T
In other contexts one may be able to reduce the three-dimensional problem to a two-dimensional one, and/or replace the general stress and strain tensors by simpler models like uniaxial tension/compression, simple shear, etc. Still, for two- or three-dimensional cases one must solve a partial differential equation problem.
Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial ...
To derive the equation of the Mohr circle for the two-dimensional cases of plane stress and plane strain, first consider a two-dimensional infinitesimal material element around a material point (Figure 4), with a unit area in the direction parallel to the -plane, i.e., perpendicular to the page or screen.
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
A linear element of a structure is one that is essentially one dimensional and is often subject to axial loading only. When a structural element is subjected to tension or compression its length will tend to elongate or shorten, and its cross-sectional area changes by an amount that depends on the Poisson's ratio of the material. In engineering ...
For example, in a fixed basis, a standard linear map that maps a vector to a vector, is represented by a matrix (a 2-dimensional array), and therefore is a 2nd-order tensor. A simple vector can be represented as a 1-dimensional array, and is therefore a 1st-order tensor. Scalars are simple numbers and are thus 0th-order tensors.