Search results
Results from the WOW.Com Content Network
In protein-coding genes, the exons include both the protein-coding sequence and the 5′- and 3′-untranslated regions (UTR). Often the first exon includes both the 5′-UTR and the first part of the coding sequence, but exons containing only regions of 5′-UTR or (more rarely) 3′-UTR occur in some genes, i.e. the UTRs may contain introns. [11]
The coding region of a gene, also known as the coding DNA sequence (CDS), is the portion of a gene's DNA or RNA that codes for a protein. [1] Studying the length, composition, regulation, splicing, structures, and functions of coding regions compared to non-coding regions over different species and time periods can provide a significant amount of important information regarding gene ...
Indeed, the intron regions of a gene can be considerably longer than the exon regions. Once spliced together, the exons form a single continuous protein-coding regions, and the splice boundaries are not detectable. Eukaryotic post-transcriptional processing also adds a 5' cap to the start of the mRNA and a poly-adenosine tail to the end of the ...
The CCDS dataset is an integral part of the GENCODE gene annotation project [11] and it is used as a standard for high-quality coding exon definition in various research fields, including clinical studies, large-scale epigenomic studies, exome projects and exon array design. [3]
Alternative splicing produces three protein isoforms.Protein A includes all of the exons, whereas Proteins B and C result from exon skipping.. Alternative splicing, alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to produce different splice variants.
Protein translation involves a set of twenty amino acids.Each of these amino acids is coded for by a sequence of three DNA base pairs called a codon.Because there are 64 possible codons, but only 20-22 encoded amino acids (in nature) and a stop signal (i.e. up to three codons that do not code for any amino acid and are known as stop codons, indicating that translation should stop), some amino ...
The structure of a prokaryotic operon of protein-coding genes. Regulatory sequence controls when expression occurs for the multiple protein coding regions (red). Promoter, operator and enhancer regions (yellow) regulate the transcription of the gene into an mRNA. The mRNA untranslated regions (blue) regulate translation into the final protein ...
The genetic code is the set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished by the ribosome, which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA ...