Search results
Results from the WOW.Com Content Network
In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen.
The reaction of a substituted amide with phosphorus oxychloride gives a substituted chloroiminium ion (2), also called the Vilsmeier reagent. The initial product is an iminium ion (4b), which is hydrolyzed to the corresponding ketone or aldehyde during workup. [7] The Vilsmeier–Haack reaction
For these latter reactions, two equivalents of the incoming group add to form an alcohol rather than a ketone or aldehyde. This occurs even if the equivalents of nucleophile are closely controlled. Overaddition of nucleophiles. The Weinreb–Nahm amide has since been adopted into regular use by organic chemists as a dependable method for the ...
The Leuckart reaction is the chemical reaction that converts aldehydes or ketones to amines. The reaction is an example of reductive amination. [1] The reaction, named after Rudolf Leuckart, uses either ammonium formate or formamide as the nitrogen donor and reducing agent. It requires high temperatures, usually between 120 and 130 °C; for the ...
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [ 2 ] and later by Fritz Schlotterbeck in 1907. [ 3 ]
The use of aldehyde in the name comes from its history: aldehydes are more reactive than ketones, so that the reaction was discovered first with them. [2] [3] [4] The aldol reaction is paradigmatic in organic chemistry and one of the most common means of forming carbon–carbon bonds in organic chemistry.
Below, the reaction mechanism is shown with R 2 = H: Mukaiyama Aldol-MechanismusV7 en. In the cited example the Lewis acid TiCl 4 is used. First, the Lewis acid activates the aldehyde component followed by carbon-carbon bond formation between the enol silane and the activated aldehyde. With the loss of a chlorosilane the compound 1 is built.
The intermediate collapses and expels the leaving group (X) to give the substitution product 3. While nucleophilic acyl substitution reactions can be base-catalyzed, the reaction will not occur if the leaving group is a stronger base than the nucleophile (i.e. the leaving group must have a higher pK a than the nucleophile). Unlike acid ...