Search results
Results from the WOW.Com Content Network
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
The pair distribution function describes the distribution of distances between pairs of particles contained within a given volume. [1] Mathematically, if a and b are two particles, the pair distribution function of b with respect to a, denoted by () is the probability of finding the particle b at distance from a, with a taken as the origin of coordinates.
Here is a simple version of the nested sampling algorithm, followed by a description of how it computes the marginal probability density = where is or : Start with N {\displaystyle N} points θ 1 , … , θ N {\displaystyle \theta _{1},\ldots ,\theta _{N}} sampled from prior.
The file size distribution of publicly available audio and video data files follows a log-normal distribution over five orders of magnitude. [92] File sizes of 140 million files on personal computers running the Windows OS, collected in 1999. [93] [62] Sizes of text-based emails (1990s) and multimedia-based emails (2000s). [62]
Given the independence of each event, the overall log-likelihood of intersection equals the sum of the log-likelihoods of the individual events. This is analogous to the fact that the overall log-probability is the sum of the log-probability of the individual events. In addition to the mathematical convenience from this, the adding process of ...
Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity.
Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).