Search results
Results from the WOW.Com Content Network
Nonlinear tides are generated by hydrodynamic distortions of tides.A tidal wave is said to be nonlinear when its shape deviates from a pure sinusoidal wave. In mathematical terms, the wave owes its nonlinearity due to the nonlinear advection and frictional terms in the governing equations.
In the shoaling zone, the wave nonlinearity increases due to the decreasing depth and the sinusoidal waves approaching the coast will transform into skewed waves. As waves propagate further towards the coast, the wave shape becomes more asymmetric due to wave breaking in the surf zone until the waves run up on the beach in the swash zone.
Integrated ocean modeling systems is helpful for specific regions: for example, the ESPreSSO model is used to study the Mid-Atlantic Bight region. Integrated ocean modeling systems often use data from buoys and weather stations for atmospheric forcing and boundary conditions. Two examples of integrated ocean modeling systems are:
The waves propagate over an elliptic-shaped underwater shoal on a plane beach. This example combines several effects of waves and shallow water, including refraction, diffraction, shoaling and weak non-linearity. In fluid dynamics, the Boussinesq approximation for water waves is an approximation valid for weakly non-linear and fairly long waves.
The method removes secular terms—terms growing without bound—arising in the straightforward application of perturbation theory to weakly nonlinear problems with finite oscillatory solutions. [1] [2] The method is named after Henri Poincaré, [3] and Anders Lindstedt. [4]
For example, the sea ice application of ROMS was originally developed for the Barents Sea Region. [ 10 ] ROMS modeling efforts are increasingly being coupled with observational platforms, such as buoys , satellites, and ship-mounted underway sampling systems, to provide more accurate forecasting of ocean conditions.
Cnoidal wave solution to the Korteweg–De Vries equation, in terms of the square of the Jacobi elliptic function cn (and with value of the parameter m = 0.9). Numerical solution of the KdV equation u t + uu x + δ 2 u xxx = 0 (δ = 0.022) with an initial condition u(x, 0) = cos(πx). Time evolution was done by the Zabusky–Kruskal scheme. [1]
An example of a nonlinear delay differential equation; applications in number theory, distribution of primes, and control theory [5] [6] [7] Chrystal's equation: 1 + + + = Generalization of Clairaut's equation with a singular solution [8] Clairaut's equation: 1