Search results
Results from the WOW.Com Content Network
This equation, stated by Euler in 1758, [3] is known as Euler's polyhedron formula. [4] It corresponds to the Euler characteristic of the sphere (i.e. = ), and applies identically to spherical polyhedra. An illustration of the formula on all Platonic polyhedra is given below.
In analogy with the cross-section of a solid, the cross-section of an n-dimensional body in an n-dimensional space is the non-empty intersection of the body with a hyperplane (an (n − 1)-dimensional subspace). This concept has sometimes been used to help visualize aspects of higher dimensional spaces. [7]
A central cross section of a regular tetrahedron is a square. The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny.
The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron. Many polyhedra are constructed from the regular icosahedron.
The regular octahedron can be considered as the antiprism, a prism like polyhedron in which lateral faces are replaced by alternating equilateral triangles. It is also called trigonal antiprism. [19] Therefore, it has the property of quasiregular, a polyhedron in which two different polygonal faces are alternating and meet at a vertex. [20]
A toroidal polyhedron with 6 × 4 = 24 quadrilateral faces. Polyhedra with the topological type of a torus are called toroidal polyhedra, and have Euler characteristic V − E + F = 0. For any number of holes, the formula generalizes to V − E + F = 2 − 2N, where N is the number of holes.
Every convex polyhedron is combinatorially equivalent to a canonical polyhedron, a polyhedron that has a midsphere whose center coincides with its centroid. The shape of the canonical polyhedron (but not its scale or position) is uniquely determined by the combinatorial structure of the given polyhedron. [56]
In elementary geometry, a face is a polygon [note 1] on the boundary of a polyhedron. [3] [4] Other names for a polygonal face include polyhedron side and Euclidean plane tile. For example, any of the six squares that bound a cube is a face of the cube. Sometimes "face" is also used to refer to the 2-dimensional features of a 4-polytope.