enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    The difference of a square matrix and its conjugate transpose () is skew-Hermitian (also called antihermitian). This implies that the commutator of two Hermitian matrices is skew-Hermitian. An arbitrary square matrix C can be written as the sum of a Hermitian matrix A and a skew-Hermitian matrix B .

  3. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.

  4. Self-adjoint - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint

    In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint (i.e. = ... such elements are often called hermitian. [1]

  5. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose "adjoint" matrix should not be confused with the adjugate, ⁡ (), which is also sometimes called adjoint. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.

  6. Hermitian adjoint - Wikipedia

    en.wikipedia.org/wiki/Hermitian_adjoint

    The adjoint may also be called the Hermitian conjugate or simply the Hermitian [1] after Charles Hermite. It is often denoted by A † in fields like physics , especially when used in conjunction with bra–ket notation in quantum mechanics .

  7. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its Hermitian adjoint N*, that is: NN* = N*N. [1] Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood.

  8. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    In linear algebra, a real symmetric matrix represents a self-adjoint operator [1] represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the ...

  9. Differential operator - Wikipedia

    en.wikipedia.org/wiki/Differential_operator

    This formula does not explicitly depend on the definition of the scalar product. It is therefore sometimes chosen as a definition of the adjoint operator. When is defined according to this formula, it is called the formal adjoint of T. A (formally) self-adjoint operator is an operator equal to its own (formal) adjoint.