enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convective inhibition - Wikipedia

    en.wikipedia.org/wiki/Convective_inhibition

    Convective inhibition (CIN or CINH) [1] is a numerical measure in meteorology that indicates the amount of energy that will prevent an air parcel from rising from the surface to the level of free convection. CIN is the amount of energy required to overcome the negatively buoyant energy the environment exerts on an air parcel.

  3. Atmospheric instability - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_instability

    CAPE is effectively the positive buoyancy of an air parcel and is an indicator of atmospheric instability, which makes it valuable in predicting severe weather. CIN, convective inhibition, is effectively negative buoyancy, expressed B-; the opposite of convective available potential energy (CAPE), which is

  4. Richardson number - Wikipedia

    en.wikipedia.org/wiki/Richardson_Number

    If it is much greater than unity, buoyancy is dominant (in the sense that there is insufficient kinetic energy to homogenize the fluids). If the Richardson number is of order unity, then the flow is likely to be buoyancy-driven: the energy of the flow derives from the potential energy in the system originally.

  5. Convective available potential energy - Wikipedia

    en.wikipedia.org/wiki/Convective_available...

    This integral is the work done by the buoyant force minus the work done against gravity, hence it's the excess energy that can become kinetic energy. CAPE for a given region is most often calculated from a thermodynamic or sounding diagram (e.g., a Skew-T log-P diagram) using air temperature and dew point data usually measured by a weather balloon.

  6. Calculation of buoyancy flows and flows inside buildings

    en.wikipedia.org/wiki/Calculation_of_buoyancy...

    The momentum equation in the direction of gravity should be modeled for buoyant forces resulting from buoyancy. [1] Hence the momentum equation is given by ∂ρv/∂t + V.∇(ρv)= -g((ρ-ρ°) - ∇P+μ∇ 2 v + S v. In the above equation -g((ρ-ρ°) is the buoyancy term, where ρ° is the reference density.

  7. Brunt–Väisälä frequency - Wikipedia

    en.wikipedia.org/wiki/Brunt–Väisälä_frequency

    In atmospheric dynamics, oceanography, asteroseismology and geophysics, the Brunt–Väisälä frequency, or buoyancy frequency, is a measure of the stability of a fluid to vertical displacements such as those caused by convection. More precisely it is the frequency at which a vertically displaced parcel will oscillate within a statically ...

  8. Grashof number - Wikipedia

    en.wikipedia.org/wiki/Grashof_number

    Free convection is caused by a change in density of a fluid due to a temperature change or gradient. Usually the density decreases due to an increase in temperature and causes the fluid to rise. This motion is caused by the buoyancy force. The major force that resists the motion is the viscous force. The Grashof number is a way to quantify the ...

  9. Stack effect - Wikipedia

    en.wikipedia.org/wiki/Stack_effect

    The stack effect or chimney effect is the movement of air into and out of buildings through unsealed openings, chimneys, flue-gas stacks, or other purposefully designed openings or containers, resulting from air buoyancy. Buoyancy occurs due to a difference in indoor-to-outdoor air density resulting from temperature and moisture differences ...