Search results
Results from the WOW.Com Content Network
In general, protein structures are classified into four levels: primary (sequences), secondary (local conformation of the polypeptide chain), tertiary (three-dimensional structure of the protein fold), and quaternary (association of multiple polypeptide structures). Structural bioinformatics mainly addresses interactions among structures taking ...
The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...
Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a repeating unit of a polymer.
An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns).
English: Functional proteins have four levels of structural organization: 1) Primary Structure : the linear structure of amino acids in the polypeptide chain 2) Secondary Structure : hydrogen bonds between peptide group chains in an alpha helix or beta 3) Tertiary Structure : three-dimensional structure of alpha helixes and beta helixes folded
The secondary-structure elements are connected by "loop" or "coil" regions of non-repetitive conformation, which are sometimes quite mobile or disordered but usually adopt a well-defined, stable arrangement. [16] The overall, compact, 3D structure of a protein is termed its tertiary structure or its "fold".
The CATH Protein Structure Classification database is a free, publicly available online resource that provides information on the evolutionary relationships of protein domains. It was created in the mid-1990s by Professor Christine Orengo and colleagues including Janet Thornton and David Jones , [ 2 ] and continues to be developed by the Orengo ...
α/β proteins are a class of structural domains in which the secondary structure is composed of alternating α-helices and β-strands along the backbone. The β-strands are therefore mostly parallel. [4] Common examples include the flavodoxin fold, the TIM barrel and leucine-rich-repeat (LRR) proteins such as ribonuclease inhibitor.