enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    e. The viscosity of a fluid is a measure of its resistance to deformation at a given rate. [1] For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. [2] Viscosity is defined scientifically as a force multiplied by a time divided by an area.

  3. List of viscosities - Wikipedia

    en.wikipedia.org/wiki/List_of_viscosities

    List of viscosities. Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'. For instance, honey has a much higher viscosity than water. Viscosity is measured using a viscometer. Measured values span several orders of magnitude.

  4. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    Viscosity depends strongly on temperature. In liquids it usually decreases with increasing temperature, whereas, in most gases, viscosity increases with increasing temperature. This article discusses several models of this dependence, ranging from rigorous first-principles calculations for monatomic gases, to empirical correlations for liquids.

  5. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    Viscosity models for mixtures. The shear viscosity (or viscosity, in short) of a fluid is a material property that describes the friction between internal neighboring fluid surfaces (or sheets) flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move ...

  6. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Stokes' law. In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

  7. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to ...

  8. International Standard Atmosphere - Wikipedia

    en.wikipedia.org/wiki/International_Standard...

    The solution is given by the barometric formula. Air density must be calculated in order to solve for the pressure, and is used in calculating dynamic pressure for moving vehicles. Dynamic viscosity is an empirical function of temperature, and kinematic viscosity is calculated by dividing dynamic viscosity by the density.

  9. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. [1][2][3][4] Stresses are proportional to the rate of change of the fluid's velocity vector. A fluid is Newtonian only if the tensors that describe ...